
CSc31800: Internet Programming, CS-CCNY, Spring 2004 Jinzhong Niu February 11, 2004

An Introduction to Java for C++ Programmers1

1 How to program in Java

To play with Java, first make sure you have two things:

• A text editor to edit Java source code files

• An Java compilation and execution environment or tool set

We may always download JDK (Java Development Kit) from http://java.sun.com/ ,
which includes a compiler, javac , and an interpreter, java . The compiler processes Java
source files and generates class files. Class files contains instructions in the format of so-
called bytecode. These instruction cannot be directly executed on traditional CPUs, instead
they have to run on a JVM (Java Virtual Machine). The interpreter, java , implements a JVM,
which translates the bytecode instructions to binary instructions and finally runs them on
local microprocessors.

To give you a sense how to program in Java, let us start with a “Hello World” example.

1. Create a Java source file, named HelloWorldApp.java , with the following content:

/**

* The HelloWorldApp class implements an application that

* displays "Hello World!" to the standard output.

*/

public class HelloWorldApp {

public static void main(String[] args) {

// Display "Hello World!"

System.out.println("Hello World!");

}

}

Note that the Java compiler and interpreter are case-sensitive, so don’t mess up the
capital letters and small ones.

1This introduction contains materials originally from http://info.baeumle.com/java/intro/ and
http://java.sun.com/ .

1

http://java.sun.com/
http://info.baeumle.com/java/intro/
http://java.sun.com/

2. Compile the source file.

On Windows, a DOS console is needed to use the above command-line tool, the com-
piler, javac . At the prompt, enter the directory you store HelloWorldApp.java first,
and then input the following command to compile the source file:

javac HelloWorldApp.java

Normally, you will see the prompt again. Congratulations! You have successfully
compiled your program and you should have another file in the same directory now,
HelloWorldApp.java .

It is possible that Windows cannot find the command javac . It is because the path of
javac is not contained in the PATH environment variable. Please do so if this indeed
happens.

3. Run the Program.

In the same directory, enter at the prompt:

java HelloWorldApp

You are supposed to see “Hello world!” coming out after the command is issued.

Based on my experience, it is convenient to have the following batch file to set up all the
environment variables that the development of Java applications needs.

@ECHO OFF

set java_home=%SystemDrive%\j2sdk1.4.0

set path=.;%java_home%\bin;%path%

set CLASSPATH=.;%java_home%\jre\lib\rt.jar

%SystemRoot%\system32\cmd.exe

2 Principles and Foundations of Java

After getting the first Java application working, we then turn our attention to the philosophy
and the foundations of Java, the basic ideas of Java and its important differences compared
with C++.

2.1 Simple!

What makes Java simpler include:

• There is no pointer!

2

• There is no macro, conditional compilation and function prototypes, so there is no need
of header files!

• There is no template and no multiple inheritance in Java either! To have the flexibility
of multiple inheritance, Java supports interface, which may be viewed as virtual classes
including only function declarations with any implementation.

• Java doesn’t support variable length parameter lists like in C++.

2.2 Almost Pure Object Orientation

You are assumed to have known the basic concepts of object orientation and known how to
answer the following questions:

• What is a class? What is an object or instance? And the relationship between them?

• What a public or private method or attribute of a class/object?

• What is inheritance and overriding?

The issues we are going to cover in class includes:

• How to define a class in Java? How to create an object? The starting point of a Java
application?

public class Bicycle extends Object implements Merchandise{

public Bicycle() {

...

}

public static void main(String args[]) {

Bicycle myBike = new Bicycle();

...

}

}

• What is an interface?

In English, an interface is a device or a system that unrelated entities use to interact.
According to this definition, a remote control is an interface between you and a televi-
sion set, and the English language is an interface between two people. Within the Java
programming language, an interface is a device that unrelated objects use to interact

3

with each other. An interface is probably most analogous to a protocol (an agreed on
behavior).

For example, a bicycle, though can run, if stocked in a store, is only required to an-
swer questions that may be asked by an inventory program, such as “what’s your unit
price?”. The program does not even care if the item is a bicycle or not. Actually every
item sold by the store should has this capability, which can be defined as an interface:

public interface Merchandise {

public double getPrice();

}

And each item, whatever it is, should support/implement this interface in the following
way:

public class Bicycle extends Object implements Merchandise{

...

}

In this case, we also say those items are the instances of Merchandise . Generally,
interfaces are useful for the following:

– Capturing similarities among unrelated classes without artificially forcing a class
relationship

– Declaring methods that one or more classes are expected to implement.

– Revealing an object’s programming interface without revealing its class.

3 Java Data Types, Operators, and Control Structures

3.1 Primitive Types and Reference Types

The following example illustrates some typical Java artifacts:

public class BasicsDemo {

public static void main(String[] args) {

int sum = 0;

for (int current = 1; current <= 10; current++) {

sum += current;

}

System.out.println("Sum = " + sum);

}

}

4

The primitive data types that Java supports includes: byte, short, int, long, double, float, boolean,
and char.

Note that in other languages, the format and size of primitive data types may depend on
the platform on which a program is running. In contrast, the Java programming language
specifies the size and format of its primitive data types. Hence, you don’t have to worry
about system-dependencies.

Arrays, classes, and interfaces are reference types. The value of a reference type variable, in
contrast to that of a primitive type, is a reference to (an address of) the value or set of values
represented by the variable.

A reference is called a pointer, or a memory address in other languages. The Java program-
ming language does not support the explicit use of addresses like other languages do. You
use the variable’s name instead. For example,

int array[10];

System.out.println("Length: "+array.length);

Note that a variable may be defined anywhere in a statement block in Java, instead of limited
to the start of a block in C.

3.2 Control Flow Statements

The following control flow statements are supported in Java: looping (while, do-while and
for), decision making (if-else, switch-case), exception handling (try-catch-finally), throw branch-
ing (break, continue, label:, return).

The Java programming language provides a mechanism known as exceptions to help programs
report and handle errors. When an error occurs, the program throws an exception. What
does this mean? It means that the normal flow of the program is interrupted and that the
runtime environment attempts to find an exception handler - a block of code that can handle
a particular type of error. The exception handler can attempt to recover from the error or, if
it determines that the error is unrecoverable, provide a gentle exit from the program. The
structure of try-catch-finally statement is:

try {

statement(s)

} catch (exceptiontype name) {

statement(s)

} finally {

statement(s)

}

5

4 Java Class Library

The following gives a list of classes scattered in different packages, which I believe are must-
know and you should start with them to get gradually familiar with Java packages.

4.1 java.system

System

public static final PrintStream out;

public static final InputStream in;

Runtime:

public Process exec(String command) throws IOException;

String

Object

4.2 java.util

Vector

Stack

4.3 java.io

File

InputStream

PrintStream

Reader

Writer

IOException

4.4 java.net

ServerSocket

public ServerSocket(int port) throws IOException;

public Socket accept() throws IOException;

Socket

public Socket(InetAddress address, int port) throws IOException;

public InputStream getInputStream() throws IOException;

6

public OutputStream getOutputStream() throws IOException;

DatagramSocket

DatagramPacket

InetAddress

5 Exercise: Accessing the class roster

Requirement:

1. From the course website, first download roster.zip and uncompress the files into
your working directory. roster.zip contains several classes files that you are sup-
posed to use to do the work explained next.

2. By accessing the classes whose public interfaces are explained below, implement a Java
program which can let you obtain your magic number.

Registrar Capable of generating our class roster.

public static Roster getRoster();

Roster An interface presenting any class roster that can be queried for a specific student
with his/her last name, first name, or id provided.

public Student getStudentByLastName(String lastName);

public Student getStudentByFirstName(String firstName);

public Student getStudentByID(String id);

public String toString();

Student An interface presenting a student who has a last name, a first name, an id and
a magic number.

public String getLastName();

public String getFirstName();

public String getID();

public int getMagicNumber();

7

	1 How to program in Java
	2 Principles and Foundations of Java
	2.1 Simple!
	2.2 Almost Pure Object Orientation

	3 Java Data Types, Operators, and Control Structures
	3.1 Primitive Types and Reference Types
	3.2 Control Flow Statements

	4 Java Class Library
	4.1 java.system
	4.2 java.util
	4.3 java.io
	4.4 java.net

	5 Exercise: Accessing the class roster

